

 Navigation

 	
 index

 	
 next |

 	Evolutionary 0.1.0 documentation

Evolutionary

Evolutionary.jl is a Julia package for evolutionary and genetic algorithms. It provides implementation of [image: (\mu/\rho \; \stackrel{+}{,} \;\lambda)]-Evolution Strategy, [image: (\mu/\mu_I, \;\lambda)]-Covariance Matrix Adaptation Evolution Strategy and Genetic Algorithms, as well as a rich set of mutation, recombination, crossover and selection functions.

Contents:

	Algorithms
	Evolution Strategies

	Genetic Algorithms

	Operators
	Mutations

	Recombinations

	Crossovers

	Selections

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

Algorithms

	Evolution Strategies

	Genetic Algorithms

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

 	Algorithms

Evolution Strategies

Evolution Strategies ([image: (\mu/\rho \; \stackrel{+}{,} \;\lambda)]-ES)

Covariance Matrix Adaptation Evolution Strategies ([image: (\mu/\mu_I, \;\lambda)]-CMA-ES)

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

 	Algorithms

Genetic Algorithms

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

Operators

	Mutations

	Recombinations

	Crossovers

	Selections

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

 	Operators

Mutations

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

 	Operators

Recombinations

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Evolutionary 0.1.0 documentation

 	Operators

Crossovers

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Evolutionary 0.1.0 documentation

 	Operators

Selections

Selection is a genetic operator used in GAs for selecting potentially useful solutions for recombination.
The GAs are stochastic search methods using the concepts of Mendelian genetics and Darwinian evolution.
According to Darwin’s evolution theory the best ones should survive and create new offspring.
There are many methods how to select the best individuals, for example roulette wheel selection, Boltzman selection, tournament selection, rank selection, steady state selection and some others.

Interface

All selection algorithms have following call interface:

	
selection(fintess, N)

	

	Parameters:	
	fintess – The vector of population fitness values, a vector of Float64 values of size M.

	N – The number of selected individuals.

	Returns:	The vector of indexses of corresponding selected induviduals, a vector of Int values of size N. Values should be in range [1,M].

Note: Some of the selection algorithms imlemented as function closures, in order to provide additional parameters to the specified above selection interface.

Implementations

Roulette

	
roulette(fintess, N)

	In roulette (fitness proportionate) selection, the fitness level is used to associate a probability of selection with each individual. If [image: f_i] is the fitness of individual [image: i] in the population, its probability of being selected is [image: p_i = \frac{f_i}{\Sigma_{j=1}^{M} f_j}], where [image: M] is the number of individuals in the population.

Rank (linear)

	
ranklinear(SP)

	

	Parameters:	SP – The selective presure value.

	Returns:	Selection function, see Interface.

In rank-based fitness selection, the population is sorted according to the objective values. The fitness assigned to each individual depends only on its position in the individuals rank and not on the actual objective value [BK85].

Consider [image: M] the number of individuals in the population, [image: P] the position of an individual in this population (least fit individual has [image: P = 1], the fittest individual [image: P = M]) and [image: SP] the selective pressure. The fitness value for an individual is calculated as:

[image: Fitness(P) = 2 - SP + \frac{2(SP - 1)(P - 1)}{(M - 1)}]

Linear ranking allows values of selective pressure in [1.0, 2.0].

Rank (uniform)

	
uniformranking(μ)

	

	Parameters:	μ – Selection pool.

	Returns:	Selection function, see Interface.

In uniform ranking, the best μ individuals are assigned a selection probability of 1/μ while the rest are discarded [SC95].

Stochastic universal sampling (SUS)

	
sus(fintess, N)

	Stochastic universal sampling (SUS) provides zero bias and minimum spread [BK87]. The individuals are mapped to contiguous segments of a line, such that each individual’s segment is equal in size to its fitness exactly as in roulette-wheel selection. Here equally spaced pointers are placed over the line as many as there are individuals to be selected.

Consider [image: N] the number of individuals to be selected, then the distance between the pointers are [image: 1/N] and the position of the first pointer is given by a randomly generated number in the range [image: [0, 1/N]].

References

	[SC95]	Schwefel H.P., Evolution and Optimum Seeking, Wiley, New York, 1995.

	[BK85]	Baker J.E., Adaptive selection methods for genetic algorithms, In Proceedings of International Conference on Genetic Algorithms and Their Applications, pp. 100-111, 1985.

	[BK87]	Baker, J. E., Reducing Bias and Inefficiency in the Selection Algorithm. In [ICGA2], pp. 14-21, 1987.

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Evolutionary 0.1.0 documentation

Index

 R
 | S
 | U

R

 	

 	ranklinear() (built-in function)

 	

 	roulette() (built-in function)

S

 	

 	selection() (built-in function)

 	

 	sus() (built-in function)

U

 	

 	uniformranking() (built-in function)

 Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

 _images/math/0c31ab07f4abfcc295b6d5049b657e9ad43994a5.png

_images/math/28058024ed59d4ca46d4ea9bf6722cb9ff2e6201.png

_static/down.png

_images/math/75e27f04188974063be3230dca208cd495b77ce1.png

_static/up.png

_images/math/4d62e89415eff56c436a3f1fdd517ef3ffa1f8c8.png
(pe/peg, A)

_static/up-pressed.png

_images/math/38624dc53a388123978af7508b2be75af6286d0b.png
(i/p T A)

_static/down-pressed.png

_images/math/dff0c73970867b8696766b1cbe5aec86eaf3bf9d.png
1/N

_images/math/50b8628c59d6ee4eba5073b491e77f66aa685c5c.png

_static/comment-bright.png

_static/comment.png

_images/math/1b2669637f947f90d09c6423bdb2f4495bca632f.png

_static/ajax-loader.gif

_images/math/f48b617185733d8dd6712643f1ab17c736661a06.png

_static/file.png

_static/plus.png

_static/comment-close.png

_static/minus.png

search.html

 Navigation

 		
 index

 		Evolutionary 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Art Wild.
 Created using Sphinx 1.3.1.

_images/math/2de38926392ba23abeac75effc66c37a5f5be5fd.png

_images/math/f3e8f82a52bdd47c816d880bdbe685ecfc88160b.png

_images/math/a581f053bbfa5115f42c13094857cdd12a37ec49.png

_images/math/0ac8f1e57cbfa359e79cd95e76676e7d2d3cc1d3.png
Fitness(P) =

_images/math/ae75a0f99240ff95cbd3287cf56da6db1ed9fbf9.png

